2021年7月21日 星期三

YOLO口罩訓練辨識模型

環境:
xubuntu20.04
kernel:5.8.0-59-generic
nvnidia driver:
NVRM version: NVIDIA UNIX x86_64 Kernel Module 460.80  ($ cat /proc/driver/nvidia/version)
display card: rtx3070
cpu: intel 11800H

參考:
Face Mask Detection using darknet’s YOLOv3

路徑:
$ cd ~/object_recognition/darknet/darknet_alexeyAB/ubuntu_mask/

開始:
  1. 下載口罩dataset:
  2. 下載
  3. Train-Test Split:
  4. 建立train_folder和test_folder
    這兩個folder再各自建立annomations和images
    下載的檔案,把90%放在train_folder,10%放在test_folder
    (比例可調整,也有看到寫8:2的文章)
    以這個範列來說,
    maksssksksss0~maksssksksss85.png放在test_folder/images
    maksssksksss0~maksssksksss85.xml放在test_folder/annotations

    maksssksksss86~maksssksksss783.png放在train_folder/images
    maksssksksss86~maksssksksss783.xml放在train_folder/annotations
  5. 將VOC轉成Yolo格式:
  6. 該作者提供程式轉換xml_to_yolo.xml Usage:
    $ python3 xml_to_yolo.py --input annotations/ --output images/
    
    yolo格式的txt檔會放在images (也必需放在images裡)

    xml_to_yolo.py
    ...
    ...
    'with_mask' : '0', (face_mask.names, Good)
    'without_mask' : '1', (face_mask.names, Bad)
    'mask_weared_incorrect' : '1' (face_mask.names, Bad)
    ...
    ...
    
  7. 必需自訂5個的檔案
    • face_maske.names (*.names)
    • Good
      Bad
      
    • face_maske.data (*.data)
    • classes = 2 (number of face_maske.names, Good and Bad)
      train = ubuntu_mask/data/train.txt
      valid  = ubuntu_mask/data/test.txt
      names = ubuntu_mask/data/face_mask.names
      backup = backup/
      
    • face_mask.cfg (*.cfg, copy the yolov3.cfg and modify it)
    • batch=64
      subdivisions=64
      width=416 (好像是32倍數)
      height=416 (好像是32倍數)
      channels=3
      momentum=0.9
      decay=0.0005
      angle=0
      saturation = 1.5
      exposure = 1.5
      hue=.1
      
      learning_rate=0.001
      burn_in=1000
      max_batches = 4000 (classes*2000)
      policy=steps
      steps=3200,3600 (max_batches*0.8, max_batches*0.9)
      scales=.1,.1
      ...
      ...
      ...
      [convolutional](共三組,分別用[yolo]的mask0,1,2和3,4,5和6,7,8當keyword找)
      size=1
      stride=1
      pad=1
      filters=21 (filters=(classes + 5) * 3)
      activation=linear
      
      
      [yolo] (共三組,分別用0,1,2和3,4,5和6,7,8當keyword找)
      mask = 0,1,2
      anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
      classes=2
      num=9
      jitter=.3
      ignore_thresh = .7
      truth_thresh = 1
      random=1
      
    • train.txt
    • 把所有訓練圖的絕對路徑寫到裡面
      /home/ubuntu/object_recognition/darknet/darknet_alexeyAB/ubuntu_mask/image/train_folder/images/maksssksksss86.png
      ...
      ...
      /home/ubuntu/object_recognition/darknet/darknet_alexeyAB/ubuntu_mask/image/train_folder/images/maksssksksss783.png
      
    • test.txt
    • 把所有測試圖的絕對路徑寫到裡面
      /home/ubuntu/object_recognition/darknet/darknet_alexeyAB/ubuntu_mask/image/test_folder/images/maksssksksss0.png
      ...
      ...
      ...
      /home/ubuntu/object_recognition/darknet/darknet_alexeyAB/ubuntu_mask/image/test_folder/images/maksssksksss85.png
      

最後樹狀圖約如下:
$ tree -L 3 darknet_alexeyAB/ubuntu_mask/
darknet_alexeyAB/ubuntu_mask/
├── data
│   ├── face_mask.cfg
│   ├── face_mask.data
│   ├── face_mask.names
│   ├── test.txt
│   └── train.txt
├── image
│   ├── test_folder
│   │   ├── annotations (*.xml)
│   │   ├── images (png images for test)
│   │   └── xml_to_yolo.py (只是方便用)
│   └── train_folder
│       ├── annotations (*.xml)
│       ├── images (png images for train)
│       └── xml_to_yolo.py (只是方便用)
└── tools (可以不用)
    ├── show_bb.py
    └── xml_to_yolo.py

訓練:
./darknet detector train ubuntu_mask/data/face_mask.data ubuntu_mask/data/face_mask.cfg -dont_show -i 0 -map
執行: (It will open the camera)
./darknet detector demo ubuntu_mask/data/face_mask.data ubuntu_mask/data/face_mask.cfg  -i 0 -thresh 0.25
跑了約5個小時
darknet53.conv.74還不是很瞭解訓練時到底要不要用...


ref:
1. Face Mask Detection using darknet’s YOLOv3
2. 建立自己的YOLO辨識模型–以柑橘辨識為例
3. YOLO 簡單訓練自己的資料集

沒有留言:

張貼留言